A riparian zone or riparian area is the interface between land and a river or stream. In some regions, the terms riparian woodland, riparian forest, riparian buffer zone, riparian corridor, and riparian strip are used to characterize a riparian zone. The word riparian is derived from Latin , meaning "river bank".
Riparian is also the proper nomenclature for one of the terrestrial of the Earth. Plant habitats and communities along the river margins and banks are called riparian vegetation, characterized by aquatic plant. Riparian zones are important in ecology, environmental resource management, and civil engineering because of their role in soil conservation, their habitat biodiversity, and the influence they have on terrestrial and semiaquatic fauna as well as aquatic ecosystems, including , , , and even non-vegetative areas.
Riparian zones may be natural or engineered for soil stabilization or restoration. These zones are important natural , protecting aquatic environments from excessive , polluted surface runoff, and erosion. They supply shelter and food for many and shade that limits stream temperature change. When riparian zones are damaged by construction, agriculture or silviculture, biological restoration can take place, usually by human intervention in erosion control and revegetation. If the area adjacent to a watercourse has standing water or saturated soil for as long as a season, it is normally termed a wetland because of its hydric soil characteristics. Because of their prominent role in supporting a biodiversity, riparian zones are often the subject of national protection in a biodiversity action plan. These are also known as a "plant or vegetation waste buffer".
Research shows that riparian zones are instrumental in water quality improvement for both surface runoff and water flowing into streams through subsurface or groundwater flow. Riparian zones can play a role in lowering nitrate contamination in surface runoff, such as manure and other from agricultural fields, that would otherwise damage and human health. Particularly, the attenuation of nitrate or denitrification of the nitrates from fertilizer in this buffer zone is important. The use of wetland riparian zones shows a particularly high rate of removal of nitrate entering a stream and thus has a place in agricultural management. Also in terms of carbon transport from terrestrial ecosystems to aquatic ecosystems, riparian groundwater can play an important role. As such, a distinction can be made between parts of the riparian zone that connect large parts of the landscape to streams, and riparian areas with more local groundwater contributions. Additionally, Richardson et al. showed that warming, nutrient enrichment, and predators interactively affect emergence, decomposition, phenology, and carbon cycling in riparian-stream systems.
- These ecosystems are intimately connected with dynamic water flow and soil processes, influencing their characteristics.
- Mesic terrestrial vegetation (vegetation adapted to moist conditions).
- Dependent animal life, relying on the riparian environment for habitat and resources.
- Local microclimate influenced by the presence of water bodies.
- Moisture-dependent trees are the dominant feature, giving these forests a unique appearance, especially in savanna regions.
- These moisture-dependent trees define the landscape, accompanied by a variety of mesic Understory, shrub, and ground cover species.
- The flora typically includes species native to the region, adapted to the moist conditions provided by proximity to water bodies.
In summary, riparian forests are characterized by their location along waterways, their intricate interplay with water and soil dynamics, a diverse array of vegetation layers, and a plant composition favoring moisture-dependent species.]]
The riparian zones also provide wildlife habitat, increased biodiversity, and wildlife corridors, enabling aquatic and riparian organisms to move along river systems avoiding isolated communities. Riparian vegetation can also provide Fodder for wildlife and livestock. Additionally, riparian vegetation supports the reproduction of species such as dragonflies, whose diverse egg-laying strategies depend on the presence of specific plants and substrates along stream banks.
Riparian zones are also important for the fish that live within rivers, such as brook and charr. Impacts on riparian zones can affect fish, and restoration is not always sufficient to recover fish populations.
They provide native landscape irrigation by extending seasonal or perennial flows of water. Nutrients from terrestrial vegetation (e.g. plant litter and insect drop) are transferred to aquatic Food web, and are a vital source of energy in aquatic food webs. The vegetation surrounding the stream helps to shade the water, mitigating water temperature changes. Thinning of riparian zones has been observed to cause increased maximum temperatures, higher fluctuations in temperature, and elevated temperatures being observed more frequently and for longer periods of time. Extreme changes in water temperature can have lethal effects on fish and other organisms in the area. The vegetation also contributes wood debris to streams, which is important to maintaining geomorphology.
Riparian zones also act as important buffers against nutrient loss in the wake of natural disasters, such as Tropical cyclone. Many of the characteristics of riparian zones that reduce the inputs of nitrogen from agricultural runoff also retain the necessary nitrogen in the ecosystem after hurricanes threaten to dilute and wash away critical nutrients.
From a social aspect, riparian zones contribute to nearby property values through amenity and views, and they improve enjoyment for footpaths and bikeways through supporting foreshoreway networks. Space is created for riparian sports such as fishing, swimming, and launching for vessels and paddle craft.
The riparian zone acts as a sacrificial erosion buffer to absorb impacts of factors including climate change, increased runoff from urbanization, and increased boat wake without damaging structures located behind a setback zone.
"Riparian zones play a crucial role in preserving the vitality of streams and rivers, especially when faced with challenges stemming from catchment land use, including agricultural and urban development. These changes in land utilization can exert adverse impacts on the health of streams and rivers and, consequently, contribute to a decline in their reproductive rates."
Other plants
The Natural Sequence Farming technique involves placing obstacles in the water's pathway to lessen the energy of a flood and help the water to deposit soil and seep into the flood zone. Another technique is to quickly establish ecological succession by encouraging fast-growing plants such as "weeds" (pioneer species) to grow. These may spread along the watercourse and cause environmental degradation, but may stabilize the soil, place carbon into the ground, and protect the land from drying. The weeds will improve the streambeds so trees and grasses can return and, ideally, replace the weeds. There are several other techniques used by government and non-government agencies to address riparian and streambed degradation, ranging from the installation of bed control structures such as log sills to the use of pin groynes or rock emplacement. Other possible approaches include control of invasive species, monitoring of herbivore activity, and cessation of human activity in a particular zone followed by natural re-vegetation. Conservation efforts have also encouraged incorporating the value of ecosystem services provided by riparian zones into management plans, as these benefits have traditionally been absent in the consideration and designing of these plans.
|
|